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Protein kinase C (PKC)-e was first discovered among novel PKC isotypes by cDNA clon-
ing, and characterized as a calcium-independent but phorbol ester/diacylglycerol-sensi-
tive serine/threonine kinase. PKC-e is targeted to a specific cellular compartment in a
manner dependent on second messengers and on specific adapter proteins in response
to extracellular signals that activate G-protein-coupled receptors, tyrosine kinase recep-
tors, or tyrosine kinase-coupled receptors. PKC-e then regulates various physiological
functions including the activation of nervous, endocrine, exocrine, inflammatory, and
immune systems. The controlled activation of PKC-e plays a protective role in the devel-
opment of cardiac ischemia and Alzheimer's disease, whereas its uncontrolled chronic
activation results in severe diseases such as malignant tumors and diabetes. This review
summarizes recent progress in our understanding of the unique structure and physio-
logical and pathological roles of PKC-e with a focus mainly on knockout, transgenic, and
mutational studies.
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Protein kinase C (PKC)-e, a novel PKC isotype character-
ized as a calcium-independent and phorbol ester/diacylglyc-
erol-sensitive serine/threonine kinase (Pig. 1), is expressed
in many tissues and cells, but abundantly in neuronal, hor-
monal, and immune cells (1, 2). To date, the essential roles
of PKC-e have been established in many signaling systems
including proliferation (3), differentiation (4), gene expres-
sion (5), muscle contraction (6), mechanical force adapta-
tion (7), metabolism (8), transport (9), exocytosis (10), and
endocytosis (11) systems, and also have nervous, inflamma-
tory, immune, and circular functions (Table I and Fig. 2).
Moreover, evidence suggesting critical roles for PKC-e in
various diseases such as tumors, ischemia, and diabetes is
accumulating.

L Unique structure, characteristic function, and
subcellular targeting

PKC-e, as in the case of other members of the PKC fam-
ily, requires phosphorylatdon at three converved sites in
order to become responsive to second messengers: Thr-566
in the activation loop, Ser-729 in C-terminal hydrophobic
site, and Thr-710 at an autophosphorylatdon site (Figs. 1
and 2) (12). Non- or hypo-phosphorylated PKC-e (immature
form) appears to associate directly with anchoring proteins
such as CG-NAP (centrosome and Golgi localized PKN-
associated protein) via its catalytic domain, and the phos-
phorylation of Thr-566 and Ser-729 seems to be conferred
at the Golgi/centrosome area.

Mature PKC-e is activated by several different second
messengers, DAG, PIP3 (phosphatidylinositol 3,4,5-triphos-
phate), and fatty acids produced by physiological stimuli
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such as PDGF (platelet-derived growth factor) and bradyki-
nin (13, 14). The subcellular localization behavior of the
kinase partially depends on which second messenger is
bound to the Cl domain. PKC-e translocates to the plasma
membrane and/or cytoskeleton in response to DAG and
tridecanoic acids, whereas it translocates to Golgi-networks
in response to arachidonic (AA) and linoleic acids (15).

The adapter proteins of PKC-e also determine its local-
ization. The coatomer protein beta'-COP (beta'-COP or
RACK2), a Golgi membrane protein involved in vesicular
trafficking, has been reported to be a selective adaptor pro-
tein for activated PKC-e (16). The association with beta'-
COP takes place via the C2 (-like) domain (previously
termed as the Dl or VI region) of PKC-e (Fig. 1). PKC-e
also binds to RACK1, which is reported to be a selective
binding protein for activated PKC-pn, although the affinity
for RACK1 is one-tenth that for RACK2.

Uniquely, PKC-e has an actdn-binding motif (a.a. 223-
228) located between the first and second cysteine-rich re-
gions of the Cl domain, and associates with actin filaments
in response to extra stimuli in a manner independent of
phosphatddylserine (Fig. 1) (17, 18). AA and DAG synergis-
tically stimulate the association of PKC-e and actin. Fila-
mentous actin not only serves as the unique anchoring
protein of PKC-e but also activates the kinase by maintain-
ing it in a catalytically active conformation. Ultimately,
both the Cl domain and C2 domain of PKC-e function as
subcellular localization signals (19).

Although some specific substrates of PKC-e, such as
calsequestrin and the capsaicin receptor (VR1), have been
reported (20, 21), most substrates, including MARCKS, are
ubiquitously phosphorylated by nearly all conventional and
novel PKCs (22, 23). Substrate specificity in regulatory sig-
naling is achieved through the spatial- and temporal-tar-
geting of PKC-e to subcellular compartments.
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Fig. 1. Structure of PKC-e. The eVl (or EVI-2) peptide derived from
the Rack-binding site located in the C2 region activates the cellular
membrane translocation of PKC-e. DAG and phorbol esters might
have different CIA versus CIB selectivity. CIB seems to be important
for fatty acid-induced targeting of the isotype. The phosphorylation of
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Fig. 2. PKC-e signaling in various cells. PKC-e is activated by DAG, corresponding responses such as neurite outgrowth, apoptosis, adhe-
PIP3, and fatty acid generated by various cell stimuli, and mediates sion and motility. See text for details and references.

II. Physiological and pathological functions
1. Nervous system. Among novel PKCs, PKC-e is the

most abundant species in the central nervous system and
there is the increasing evidence that PKC-e mediates vari-
ous effects in neurons. PKC-e induces neurite outgrowth
during neuronal differentiation activated by various stim-
uli (24, 25) through interaction with actin filaments, and
the Cl domain, which contains the actin-binding moti£ is
essential in this process (18). The significance of the actin-

binding site in the interaction with filaments has also been
implicated in neurotransmitter exocytosis (17).

PKC-e also seems to mediate synaptic function, hi sen-
sory neurons, PKC-e has been implicated in the regulation
of nociceptor function that participates in various types of
pain (26, 27). Interestingly, several studies using PKC-e—
knockout mice suggest that activation of the isotype plays a
critical role in alcohol dependency by regulating the sensi-
tivity of GABAA receptors (28). Moreover, neuronal hyper-
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excitability during alcohol administration may be mediated
by PKG-e-induced upregulation of N-type channels {29}.

2. Inflammatory, immune, and hematopoietic cir-
cular systems. PKC-e appears to play critical roles in ac-
tivated macrophages (30). The macrophages from PKC-e-
knockout mice have severe deficiencies and, in the absence
of PKC-e, host defense against bacterial infection is se-
verely compromised, resulting in increased mortality. PKC-
e and/or -8 are also necessary for IgG-stimulated phagocyto-
sis (31).

IkappaB kinase (IKK) phosphorylation is essential for
the activation of transcriptdonal factor NF-kappaB. PKC-e
has been demonstrated to mediate IKK phosphorylation
via the activation of NAK (NF-kappaB-activating kinase)
in response to growth factors (32). Since PKC-e activation
decreases in TNFalpha-induced apoptosis (33) and NF-kap-
paB is well established as an anti-apoptotic factor, the pro-
tective role of PKC-e against apoptosis may be mediated
through NAK activation.

PKC-e activates the MEK-ERK1/2 cascade and mediates
the induction of gene expression in erythropoietin (Epo)-
stimulated erythroid cells (34), thrombin-stimulated jurkat
T cells (35), and many other cell systems. On the other
hand, PKC-e seems to control MAPK cascades negatively
through the induction of MAPK phosphatase 1 (MKP-1) in
lipopolysaccharide-stimulated macrophages (36).

3. Tumorigenesis. The roles of PKC isotypes in tum-
origenesis are tissue- and cell-specific. For example, PKC-a
has no effect on skin tumor promotion and PKC-6 reduces
papilloma development (37). PKC-J3 has a partially onco-
genic effect on fibroblasts (38). PKC-e seems to be involved
in tumor development and tumor cell invasion and me-
tastasis in several tissues.

When overexpressed in several fibroblast and colonic and
prostatic epithelial cell lines, PKC-e has full oncogenic
effects (39—41). Its oncogenic activity in these cells seems to
be exerted through affects on the ras-signaling cascade at
the level of Raf-1 activation (42, 43). Consistently, PKC-e
has been shown to mediate cyclin Dl induction in Ha-ras-
transformed fibroblasts (44). In contrast, inhibiting the
high levels of PKC-e activation may suppress tumor promo-

tion (45).
Epidermis-specific transgenic overexpression of PKC-e

causes mice to develop highly malignant/metastatic carci-
nomas (37). The evidence that PKC-e contributes to tumor
metastasis is accumulating. PKC-e is required for the cell
spreading mediated by integrin pi, and Racl acts down-
stream of PI3-kinase and PKC-e (46, 47). PKC-e is reported
to be linked to integrin (31 through interaction with
RACK1, and to associate with F-actin via its actin-binding
site, thereby mediating increased adhesion and mobility
(48, 49). Moreover, PKC-e appears to contribute to motility
by regulating (31 integrin traffic that permits its recycling
in cells (50). These are concomitant with the observation
that PKC-e levels are consistent with the degree of invasion
and metastasis of human glioma. In human breast carci-
noma cells, cis-polyunsatulated fatty acids stimulate (31
integrin-mediated adhesion to type TV collagen by activat-
ing PKC-e and PKC-p, (51).

Chronic hypoxia in tumors can promote malignant pro-
gression and confer resistance to irradiation and chemo-
therapy by altering gene expression. PKC-e also seems to
play a role in these processes by activating the Raf-1/MEK/
ERK cascade (52).

Since PKC-e is implicated in apoptosis signaling in vari-
ous cells, the possibility also arises that a loss of expression
or function of PKC-e may participate in tumorigenesis by
the inhibition of programmed cell death. In thyroid tumors,
rearranged amplification of the PKC-e gene or post-tran-
scriptional changes have been reported (53). In addition,
PKC-e has been implicated in ultraviolet-induced apoptosis
and tumor promotion (54, 55).

The constitutive expression of the catalytic fragment via
de-novo synthesis has been reported in lung carcinoma
(NC1-N417) cells (56). On the other hand, during apoptosis
or oncogenic-transforming processes, PKC-e appears to be
subjected to restrictive proteolysis by caspase (3 and 7) (57,
58) or selective cleavage by calpain (59, 60).

Taken together, these data suggest that PKC-e plays im-
portant role in the signaling cascade accompanying apopto-
sis and tumorigenesis.

4. Heart disease. The function of PKC-e in cardiomyo-

TABLE I. Function of PKC-e in the knockout and transgenic mice.
A. Knockout mice

Phenotype of PKC-E knockout mice

(Expression tissue) Sequence Phenotype of PKC-E transgenic mice

Reference
Dysfunction of macrophages including decreased activation of NF-kappaB, and decreased survival after bacterial infection. (30)
Super-sensitivity of GABAA receptors in the cortex, and reduction of alcohol self-administration. (28)
Attenuation of pain via nociceptor function in sensory neurons. (27)
Reduction of the cardioprotective effect of early ischemic preconditioning. (62)

B. Transgenic mice
Reference

(Cardiomyocyte)
PsiepsilonRACK; activator of
the translocation

EpsilonVl; inhibitor of the
translocation
Wild type, Dominant nega-
tive, inactive, or constitutive
active mutant

(Epidermis in skin)
Wild type

Normal contraction in the neonatal heart, (16)
Improvement of cardiac contractile function,
Protection against cell death by cardiac ischemia.
Severe cardiomyopathy with reduced contraction in the neonatal, (16)
Attenuated protection from ischemia-induced cell death.
Cardiotrophic effect,
Activation of PKC-piI through the expression of PKC-0 specific RACK! mediated by PKC-e, (69)
contributing pathological hypertrophy, (67, 68)
Formation of PKC-e-Lck modules confers cardioprotection from ischemia, (66)
Colocalization of PKC-e with three MAPKs in the mitochondria of cardiomyocytes, and pro- (65)
tection from cell death via the activation of mitochondrial ERKs and inactivation of Bad.

Formatiortof metastatic squamous cell carcinoma without development of papilloma. (37)
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cytes has been actively studied {61).
Studies based on the cardio-specific transgenic expres-

sion of PKC-e-selective translocation inhibitor (epsilonVl)
or activator (psiepsilonRACK) peptides clearly show that
PKC-e plays critical roles in protecting against ischemic
damage as well as during normal postnatal myocardial
development (16). Targeted disruption of the PKC-e gene
has been reported to prevent infarct size reduction follow-
ing ischaemic preconditioning (62). Physiologically moder-
ate ethanol consumption in the development of ischemia
appears to have beneficial cardioprotective effects by
directly activating PKC-e.

The signaling pathways responsible for cardiacprotection
involve the activation of PI3-K upstream (63) and the
MEK1/2-ERK1/2 cascade downstream of PKC-e, and, in
turn, the activation of anti-apoptosis transcriptional factors
such as NF-kappaB (64). In addition, stress-activated ki-
nases, p4€/p54 JNKs, seem to be activated by PKC-e. PKC-
e and three MAPKs, ERKs, JNKs, and p38MAPK, are re-
ported to colocalize with mitochondria, which are thought
to be key mediators of the cardioprotective signal (65). The
transgenic activation of PKC-e increases in these interac-
tions, and during the phosphorylations of ERKs and Bad,
leading to cell survival. Src and Lck tyrosin kinases also
appear to be involved in PKC-e signaling (66).

The contribution of PKC-pn has been established in the
pathogenesis of myocardial hypertrophy and dysfunction.
The role of PKC-e in hypertrophy is somewhat complex.
Analysis by the transgenic expression of PKC-translocation
modifiers (epsilonVl and psiepsilonRACK) have shown
that the activation of PKC-e improves contractile dysfunc-
tion in pathological myocardial hypertrophy, whereas inhi-
bition of PKC-e leads to lethally dilated cardiomyopathy
(67). However, high levels of PKC-e activation in transgenic
mice seem to lead to impaired function and significant myo-
cardial hypertrophy (68), probably due to the enhancement
of translocation and activation of PKC-(3II through PKC-e-
mediated RACK1 expression (69).

5. Diabetes, Alzheimer's disease, and others. The
chronic activation of PKC-e is involved in the development
of diabetes and in the progression of various diseases in-
volving a hyperglycemic state (70). In the muscle, increased
expression and activation of PKC-e seem to be causally
related to the development of diabetes, at least part, via the
down-regulation of insulin receptor and lipid accumulation,
resulting in impaired glycogen synthesis and insulin resis-
tance. Enhanced activity of PKC-e in hyperglycemic states
also contributes to cardiomyopathy (71) and nephropathy
(72), and to the accelerated development of vascular dis-
ease.

The deposition of plaques containing Abeta (beta-secre-
tase-derived C-terminal fragment) is thought to be impor-
tant in the pathogenesis of Alzheimer's disease. PKC-e sup-
presses the production of Abeta by promoting alpha-secre-
tase—mediated processing of APP (the beta amyloid precur-
sor protein) (73). The level of PKC-e is substantially lower
in the brains of Alzheimer's disease patients compared to
age-matched controls (74). Thus, reduced PKC-e activity
may contribute to the development of Alzheimer's disease.

Furthermore, a PKC-e-dependent pathway is proposed
in the development of interstitial lung fibrosis in systemic
sclerosis (SSc) patients (75).

HL Conclusions and perspectives
Recent structural and functional studies of PKC-e are

briefly reviewed. Knockout, transgenic, and mutagenic ex-
periments are greatly facilitating progress in understand-
ing PKC-e functions. The development of a specific activa-
tor and inhibitor, psiepsilonRACK and epsilonVl peptides,
respectively, has provided not only useful probes for experi-
mental research but also a model for pharmacological ther-
apy. However, little is known about the tertiary structure of
PKC-e, although the structure of the C2 domain has been
reported recently (76). Further fundamental studies on the
structure as well as the biological and pathological func-
tions are important for total understanding and for the
development of novel therapies specifically directed against
PKC-e.
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